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Within the context of biopolymer renaturation in Vitro, a principle of maximiza-
tion in the economy of the folding process has been previously formulated as the
principle of sequential or stepwise minimization of conformational entropy loss
(SMEL). When specialized to the RNA folding context, this principle leads
to a predictive folding algorithm under the assumption that an "adiabatic
approximation" is valid. This approximation requires that conformational
microstates be lumped up into base-pairing patterns (BPPs) which are treated
as quasiequilibrium states, while folding pathways are coarsely represented as
sequences of BPP transitions. In this work, we develop a semiempirical
microscopic treatment aimed at validating the adiabatic approximation and its
underlying SMEL principle. We start by coarse-graining the conformation tor-
sional space X=3N-lorus , with N = length of the chain, representing it as the
lattice (Z 2 ) 3 N , where Z2 = integers modulo 2. This is done so that each point in
the lattice represents a complete set of local torsional isomeric states coarsely
specifying the chain conformation. Then, a coarse Lagrangian governing the
long-time dynamics of chain torsions is identified as the variational counterpart
of the SMEL principle. To prove this statement, the Lagrangian computation of
the coarse Shannon information entropy a associated to the specific partition of
X into BPPs is performed at different times and contrasted with the adiabatic
computation, revealing (a) the subordination of torsional microstate dynamics
to BPP transitions within time scales relevant to folding and (b) the coincidence
of both plots in the range of folding time scales.
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1. INTRODUCTION

This work is concerned with the theoretical underpinnings of the expedient
by which natural biopolymers reach their active conformation under in
vitro renaturation conditions within timescales incommensurably shorter
than ergodic or thermodynamic times. (1 -6 ) In this regard, we have shown
in recent work specialized for an RNA context(2) that the amount of
Shannon information, —a, measured relative to a fixed coarse description
of conformation space, reaches its absolute maximum within experimen-
tally-relevant timescales. This result is not generic, and applies to RNA
sequences which are targets of natural selection. Moreover, this result has
been obtained making use of an "adiabatic ansatz," whereby microscopic
conformations are lumped up or coarsely resolved as contact or base-
pairing patterns (BPP's) treated as quasiequilibrium states,(7) while the rate
of each elementary BPP transition is computed from within an Arrhenius-
type scenario of activated processes. This kinetic adiabatic approach treats
the transition probability between two BPP's as dependent on the kinetic
barrier separating the respective valleys in the free energy landscape(2,4,6,7)

From a purely combinatorial viewpoint, BPP's of an RNA chain folding
onto itself are drawn upon the map of Watson-Crick base-pair comple-
mentarities (A-U, G-C), which in turn, is obtained for each sequence made
up of the four units denoted A, U, G and C.(7)

In this regard the following question may be posed: What is the micro-
scopic origin of the expediency of the folding process which is revealed at the
BPP-level? In the present work we address this question by developing a semi-
empirical microscopic model of folding in which the compact conformation
manifold X for the flexible RNA chain (the cartesian product of as many circles
as torsional degrees of freedom the chain possesses) is coarsely resolved
modulo torsional conformational isomers as the lattice (Z2)3N, where Z2

represents the cyclic field of integers modulo 2, and N is the length of chain.
Thus, each point in the lattice represents a complete set of torsional isomeric
states ("civ or trans" in the physical chemist language) which coarsely represent
the chain conformation. The implementation of the model hinges upon the
identification of the Lagrangian structure of the underlying dynamics in the
lattice. In this work, the validity of this variational principle will be shown to
be given by the fact that it is precisely the counterpart of the principle of
sequential minimization of conformational entropy loss (SMEL).(4,5) The
SMEL principle reflecting the maximization in the economy of means involved
in each step of folding, is known to be valid at the BPP level and has been con-
firmed in previous predictive computations.(4,5) Thus, the Lagrangian
dynamics defined over (Z2)3N yields the adiabatic Arrhenius-type dynamics
when projected onto the BPP space, as shown in this work.



Lagrangian Dynamics of RNA Folding 239

The variational principle introduced enables us to rigorously deter-
mine the time-dependence of the coarse information entropy, a, with
respect to a fixed partition of X into BPP's, Z, and compare the results
with the adiabatic computation.(2) This analysis reveals that the adiabatic
approximation is valid within biologically-relevant folding timescales, and
thus provides a detailed semiempirical understanding of the expediency of
the folding process.

A major stumbling block in the implementation of the variational
treatment of longtime torsional dynamics of the flexible RNA chain and its
bearing on the folding process is due to the parallel nature of the explora-
tion in conformation space. The concurrence of folding events taking place
at the same time in different portions of the same flexible chain precludes
any meaningful isolation of a single "reaction coordinate" at any given
time. In order to address this question, we shall first coarsely identify
foldings as elements of (Z2)

3N, that is, as patterns of 3N locally-encoded
binary signals representing sets of 3N torsional states, each defined within
a two-well or cis-trans flipping activated process. Within this frame, an
underlying coarse Lagrangian or least-action formulation will be intro-
duced over trajectories defined as sequences of pattern transitions. This
Lagrangian will be conceived to single out the folding pathway which at
each step minimizes the conformational entropy cost while maximizing
the decrease in enthalpy. This pathway yields the SMEL-pathway when
projected onto the BPP space Z. These tenets warrant a folding collapse
following preferably the most economic pathway.(1) However, this is not
expected to be a generic feature, but rather a specific property of sequences
which are targets of natural selection, as indicated in Section 6.

The definition of the Lagrangian demands that we first justify our
coarse-graining of X upon which pathways are to be drawn. Our first
problem becomes how to coarsely codify the local torsional states and local
correlations of the flexible chain, and provide an effective dynamical picture
introducing long-range correlations to account for its long-time behavior(8)

Accordingly, to solve this problem we shall regard foldings as coarse
patterns of locally-encoded structural signals modelled as generated by
two-state oscillators or spin flippers. Thus, we introduce a coarse descrip-
tion of the dynamics based on a topological representation of the chain
backbone. This is done by providing a binary codification of the soft-mode
or torsional dynamics based on the local conformational restrictions that
basically lead to a two-well or cis-trans flipping between torsional isomers
subject to local and long-range correlations. Thus, each torsional potential
basin represents a local topological state representing a local constraint.
The geometry itself is immaterial within this level of description, since the
latitude in the torsional potential basins (30 to 60 degrees,(9)) yields vast
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conformational distortions which would make the conformations formed
unrecognizable as BPP's.

As a first step, a binary coding of local topological constraints
associated to each secondary and tertiary structural motif is introduced,
with each local topological constraint corresponding to a local torsional
state. Our treatment enables us to adopt a relatively large computation
time step of 1 ns, a value far larger than typical hydrodynamic drag time
scales, without sacrificing accuracy within our level of description. Accor-
dingly, the solvent can no longer be treated as the hydrodynamic drag
medium, instead we incorporate its capacity for forming local conforma-
tion-dependent domains of different dielectric constant. Each evaluation of
the matrix of local topological constraints (LTM) depends on the confor-
mation-dependent local dielectric domains that the confined solvent will
produce: As shown in Section 4, these local solvent environments deter-
mine constraints on the torsional freedom due to the orientational
demands imposed on the charged phosphate groups of the RNA backbone.(4)

Folding pathways are initially resolved as transitions between patterns
of locally-encoded structural signals which change within the 1/10/is-
100 ms timescale range. These coarse folding pathways are generated by a
parallel search for structural patterns in the oscillating LTM. Each pattern
is evaluated, translated and finally recorded as a BPP, an operation which
is subject to a renormalization feedback loop. The renormalization opera-
tion periodically introduces long-range correlations on the LTM according
to the latest BPP generated by translation. Nucleation and cooperative
effects are accounted for by means of the renormalization operation which
warrants the persistence of seeding patterns or kernels upon successive
LTM evaluations.

In consonance with the first goal, our working strategy may be
sketched as follows: (a) First, we introduce an ensemble of 3N locally-
correlated two-state oscillators or spin flippers to coarsely simulate tor-
sional isomerizations, that is a flipping between the two torsional wells for
each internal degree of freedom of the RNA backbone. Then, we search for
consensus regions of torsional isomers along the chain. By consensus we
simply mean regions of the chain where the local topological constraints
associated to the formation of a particular folding of the chain are satisfied.
In this way, a consensus window emerges as a pattern of structural signals
encoded locally along the sequence. The broad latitude in local torsional
coordinates, or local correlation maps of the chain,(9) and the vast struc-
tural distorsions it leads to implies that the binary codification cannot be
implemented at the geometric level. Rather, the spin flippers are meant to
mimick changes in the local topological constraints to which the flexible
chain is subject in order to reach specific structural patterns, (b) We
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generate structural patterns as consensus regions within a matrix, the
LTM, of local topological constraints (LTC's) of the chain, (c) We evaluate
and translate such patterns into a contact matrix representing a BPP drawn
upon the Watson-Crick map of compatible (A-U, G-C) base-pairing units
along the chain evolving within the timescale range 10-4-102s. Thus, the
translation operation is actually a projection, henceforth denoted n, and
becomes a pattern recognition and therefore, a parallel operation. Each
pattern within an LTM emerges with a certain probability which is effectively
computed as the number of evaluations of the LTM that yield the particular
structural motif associated to the pattern divided by the total number of
evaluations of the same LTM. (d) The translation operation is subject to
a feedback loop, whereby a renormalization operation p readjusts the
oscillator periods (or spin-flipping frequencies) according to the latest BPP
translated, and the contour ranges of intrachain interactions and contour
distances are renormalized relative to the latest CP formed. In other words,
the renormalization operation introduces long-range correlations on the LTM
by slowing down or speeding up specific oscillators, depending on whether
new interactions are formed or dismantled, (e) Nucleation steps and the
cooperativity in the formation of secondary structure are accounted for by
means of the renormalization operation: Suppose the LTM is evaluated at
a given time and a short consensus window is detected. Then, the
oscillators which generated this initial consensus window become endowed
with frequencies which are lower than those of the neighboring residues
and, consequently, the consensus region initially formed has a chance to
grow upon successive evaluations of the LTM.

The fact that we charaterize folding steps as BPP transitions does
not imply that any "adiabatic assumption" has been introduced a-priori,
in the sense that no enslavement or subordination of the fast-evolving
microscopic degrees of freedom to BPP transitions has been imposed.
Equivalently, BPP's are not treated a-priori as quasi-equilibrium states by
integrating out the relatively fast torsions as conformational entropy. Thus,
the BPP is generated by a parallel search for consensus windows in the
LTM. Defined in this way, an LTM represents a coarse microscopic
realization of a BPP such that the consensus windows reflect the fulfilment
of the LTC's determined by the BPP. This sketch of the operational tenets
reveals that, although advantage is taken of the fact that there exists a wide
separation between characteristic timescales associated to folding events
(typically in the range 10 -4-103s) and chain torsions (typically in the
range 10 - 1 1 -10 - 7 s ) , no "adiabatic assumption" is introduced.

In this way, a computational strategy is devised to provide theoretical
underpinnings of the folding dynamics emerging as the evolution of pat-
terns of locally-encoded signals whose coherence reflects both cooperativity
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and nucleation effects. The key features of our approach are: (A) The
two-state coarse codification of local topological constraints of the flexible
chain; (B) The renormalization of timescales for torsional isomerizations
and their correlation decays relative to the successive stages of folding, thus
introducing long-range correlations due to large-scale motions; (C) The
identification of structural patterns with consensus regions in which specific
topological constraints are fulfilled; and (D) The vast range of timescales
10-11102s covered.

At this point we may return to the original problem posed. Our
representation of foldings as patterns of structural signals encoded locally
along the chain allows us to identified the most economic pathway-defined
as a sequence of BPP transitions. This pathway entails at each step the
minimal cost in conformational entropy while forming as many contacts as
possible. This fact will enable us to readily define a Lagrangian underlying
the generation of trajectories regarded as sequences of LTM transitions.

An outline of the work is as follows: In Section 2, we describe the
interrelationships between the two levels of description of the RNA folding
process: The semiempirical microscopic description of the torsional dynamics
of the chain and the resolution of the folding process as BPP transitions.
In Section 3, we describe the computation of the time-dependent a for the
fixed partition of conformation space into BPP's using the adiabatic ansatz.
In Section 4, we introduce our semiempirical microscopic model in detail.
Section 5 is devoted to identifying the variational principle at the semi-
empirical microscopic level. Finally, in Section 6, we compare the Lagrangian
computation of a with that obtained using the adiabatic approximation,
thus revealing the validity of the latter simplified approach within the
experimental timescales involved in detectable folding events.

2. THE LEVELS OF COARSENING OF THE
RNA FOLDING DYNAMICS

The relationships and interplay between the different levels of coarse-
ness with which the folding dynamics are simulated in this work require a
clear representation scheme such as the one presented in Fig. 1. Our main
concern in this section is to define what is meant by a consistent treatment
of the folding problem in which different coarse levels of description of the
chain dynamics are compatible with each other. Standard notation has
been adopted, (1-9) thus the conformation of each unit along the chain is
specified by three torsional variables, each of which taking values in a
circle.

Let X denote the 3N-torus (cartesian product of 37V circles) corre-
sponding to the full-detailed or torsional conformation space for a chain of
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Fig. 1. Commutative diagram reflecting the compatibility of different coarsenings of the
chain dynamics relevant to the RNA folding process.

length N. Then, at the richest level of description, the chain dynamics is
given by a map Q: X -» TX, where TX is the tangent space of X, that is, the
space of all possible vector fields over the compact manifold X. This is
actually a soft-mode description of the chain dynamics in its fullest detail
and incorporates the solvent solely as a hydrodynamic drag term. This
analysis requires an adiabatic averaging over the hard modes (stretching
vibrations and planar angular vibrations) which oscillate on timescales
three to four orders of magnitude shorter than the soft modes.(9) Very
limited time ranges for the full-detail soft-mode dynamics (1-100ps) have
been explored by molecular dynamics (MD) simulations.(8-10) Since the
time range effectively covered by MD is far shorter than the time ranges of
interest to the folding context, we shall consistently introduce coarse
descriptions of X, as indicated in Fig. 1.

Let XI ~ be the quotient space consisting in the set of equivalence
classes of torsional isomers modulo a relation " ~," that is, conformations
defined modulo their local torsional isomers, regardless of their difference
at a finer level of detail. In accord with known stereochemical con-
straints,(9) there are only two distinctive torsional species or isomers for
each torsional variable. Thus, two conformations of the entire chain are
regarded as ~-equivalent if their torsional values for each residue lie
within the same regions of the circle corresponding to the same local
torsional isomers. Since there are two torsional isomers defined for each
dihedral variable, X/ ~ may be represented as a lattice of 2 x 3N points
drawn on the torus X. Actually, since each point represents one of the two
basins of attraction in the unit circle, with each basin representing a tor-
sional isomer, we get the isomorphism: X/ ~ «(Z2)3N, where Z2 represents
the cyclic field of integers modulo 2. This space is also isomorphic to the
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space of all possible LTM's since local topological constraints are specified
by regions within the circle for certain combinations of the canonical
dihedral variables, as indicated in Section 4. The dynamics at the LTM
level are given by the projected map i2/~: (Z2)

3N-> T(Z2)
3N, where, as

usual, "T" denotes tangent space in this context.
Let Z denote an even coarser description of X. In this case, two con-

formations in X are regarded as equivalent if their respective BPPs are
identical, regardless of finer detail. Thus, at the BPP level, the folding
dynamics is given by a map A:Z-* TZ. Then, all three levels of description
of the folding dynamics are compatible with each other if and only if
the diagram given in Fig. 1 is commutative. That means that the following
relations between map compositions must hold:

where n is the canonical projection (referred to as the translation operation
in the computational context already described) which associates to each
LTM its equivalence class modulo CP's, n' is the canonical projection
associating its LTM to each microscopic conformation belonging to X,
and Tn and TV are their respective projections between tangent spaces, as
indicated in Fig. 1.

To summarize, the commutativity of the diagram displayed in Fig. 1
defines the consistent theoretical framework dealt with in this work: All
three descriptions of conformation space, the one with the richest detail, X,
the LTM description, X/ ~, and the BPP-description Z will represent
mutually-compatible frameworks within which the folding dynamics will be
studied.

3. SIMULATING FOLDING DYNAMICS AT THE BPP LEVEL

This section is devoted to determining the expediency of the RNA
folding process by determining the time evolution of the information con-
tent associated to the exploration in conformation space. Conformations
have been resolved as BPP's, each of which regarded as a quasi-equilibrium
state according to an adiabatic ansatz. In simple terms, this means that
microscopic degrees of freedom are integrated out as conformational
entropy. The partition of conformation space X relevant to the computa-
tion of a is the collection Z, a family of mutually-disjoint classes. The
coarse information entropy measures the spreading of the probability dis-
tribution vector P(t) = (P1(t),..., PM(t)), where Pj(t), j = 1,..., M indicates
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the probability that a chain is folded into the BPP/' at time ?, and M is the
total number of a-priori possible BPP's for a fixed RNA sequence. These
probabilities should be interpreted in a Gibbsian sense, as we have a
statistically large number ( ~ 1020-1023 per unit volume) of replicas of our
system given by actual RNA molecules which are folding onto themselves
as soon as renaturation conditions are established or recovered in the
environment. Thus, the information entropy associated to the folding
process resolved at the BPP level is

A stochastic process governs the flow of probability.(4,5) This process is
determined by the activation energy barriers required to produce or dis-
mantle interactions that stabilize the BPP's. Thus, at each instant, the
partially-folded chain undergoes a series of disjoint elementary events with
transition probabilities dictated by the unimolecular rates of the events.
The stochastic process is Markovian since the choice of the set of disjoint
events at each stage of folding is independent of the history that led to that
particular stage of the process.

In order to compute the probability distribution at any given time and
the resulting behavior of C, we first discretize time t by adopting an elemen-
tary time interval length u such that t = t'u, where t' is dimensionless and
u is the shortest possible mean BPP transition time. Then, if U = U(u)
represents the stochastic transition matrix at the BPP level, we get:

where the matrix element [U(w)],- ,- is given by:

In this equation, kij indicates the unimolecular rate constant for the BPP
transition i ->j, J(i) is the set of BPP's accessible from i through elementary
transition steps involving surmounting a single kinetic barrier (see below),
the factor [kij/£j'eJ(i)kij] represents the probability for the transition
i->j dictated by kinetic control within a timespan of the order of
T iJ = k i j

- 1 , and P i j ( U ) is given by
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with Y(t — T i j ) , a Gaussian distribution centered at the mean time Tij. for
the i-*j transition with temperature-dependent dispersion. The disper-
sion parameter will be evaluated in Section 4 within a realistic physical
context.

Explicit values of the unimolecular rate constants require an updated
compilation of the thermodynamic parameters at renaturation condi-
tions.(7) These parameters are used to generate the set of kinetic barriers
associated to the formation and dismantling of stabilizing interactions, the
elementary events in our context of interest. Thus, the activation energy
barrier for the rate-determining step in the formation of a stabilizing inter-
action is known to be — T AS loop, where ASloop indicates the loss of confor-
mational entropy associated to closing a loop. Such a loop might be of any
of four admissible classes: bulge, hairpin, internal or pseudo knotted. For
a fixed number L of unpaired bases in the loop, we shall assume the kinetic
barrier to be the same for any of the four possible types of loops.(2,4) This
assumption is warranted since the loss in conformational entropy is due to
two overlapping effects of different magnitude: The excluded volume effect,
meaningful for relatively large L (L> 100) and the orientational effect that
tends to favor the exposure of phosphate moieties towards the bulk solvent
domain for better solvation. Since both effects are independent of the type
of loop, we may conclude in relatively good agreement with calorimetric
measurements, that the kinetic barriers are independent of the type of loop
for fixed L. On the other hand, the activation energy barrier associated
with dismantling a stem is — AH(stem), the amount of heat released due to
base-pairing and stacking when forming all contacts in the stem.

For completion we shall display the analytic expressions for the
unimolecular rate constants k's. For clarity of the notation we shall drop
the subindexing, since we shall focus each time on a specific BPP transi-
tion. If the transition happens to be a helix decay process, we obtain:

where n is the number of base pairs in the helix formed in the j'th step,
f«106s-1 is the fixed effective frequency of successful collisions(2,4) and
Gh is the (negative) free energy contribution resulting from stacking of the
base pairs in the helix. Thus, the essentially enthalpic term —Gh =
— AH(stem) should be regarded as the activation energy for helix disrup-
tion. On the other hand, if the transition happens to be formation of a
stabilizing interaction, the inverse of the mean time for the transition will
be given by:
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where JGloop % — T ASloop is the change in free energy due to the closure
of the loop concurrent with helix formation.

Equations (2)-(7) should be regarded as the working equations of the
adiabatic approximation. This approximation will be tested in Section 6 by
comparing the adiabatic computation of the information entropy with a
more rigorous computation obtained from a more profound level of
description of the long-time dynamics of the chain.

4. RNA FOLDING AT A SEMIEMPIRICAL
MICROSCOPIC LEVEL

The vast gap between the timescales accessible to molecular dynamics
computations, typically in the range 1 ps-10 ns, and those inherent to
transitions between contact patterns BPP's, typically in the range
1 u/s-103 s, suggests the need for a semiempirical model judiciously simpli-
fying the soft-mode or torsional dynamics. Thus, the problem becomes how
to incorporate effective internal degrees of freedom of the chain whose
dynamics translates or projects onto sequences of BPP transitions. The aim
of this section is to introduce a matrix where local torsional states of the
chain are codified in a simplified binary fashion, so that patterns of locally-
encoded structural signals may be recognized and translated as BPP's.(8)

Since conflicting possibilities may arise yielding different evaluations
or pattern recognitions, a probabilistic approach appears to be necessary.
A realization of this concept is introduced in this work and materializes in
a semiempirical model which deals mechanistically with the rich dynamic
hierarchy of timescales determined by the different levels of structural
resolution of the folding process and their interplay.

Thus, the exploration of conformation space results from the parallel
occurrence of trails of folding events. The base-pairing matrix (BPM)
evolving in the 1/10ms-103s timescale and built upon the map of
Watson-Crick (W-C) antiparallel complementarities is generated by a
search for consensus windows in the LTM which records the phases of 3N
two-state oscillators or spin flippers evolving within a period range
10-11 s-10-5 s. Each oscillator represents the flipping between the two
potential basins (or "cis-trans" isomers) for each dihedral torsional degree
of freedom. The LTM represents a coarse microscopic realization of the
BPP represented by the BPM such that a consensus window reflects the
fulfilment of the local topological constraints determined by the putative
intrachain contact: Specific dihedral torsions must be in the "correct state"
required for contact formation. As emphasized in Section 1, the local
geometry itself is immaterial since the latitude of the torsional potential
basins (30 to 60 degrees,(9)) yields vast conformational distortions which
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would make the conformations formed unrecognizable if translated as
BPPs.

The local constraints are themselves imposed by the conformation-
dependent confined-versus-bulk solvent environments of different dielectric,
and by the steric restrictions determined by loop closure. In this way,
a coarse long-time torsional dynamics of the chain becomes computationally
accessible. The codification will be taken to be binary since each torsional
degree of freedom flips between two potential wells representing two local
torsional isomers subject to local correlations and constraints. As shown in
this section, the computational time step at the typical folding temperature
of 303 °K is 1 ns, a value far larger than the hydrodynamic timescale of
15 ps used in the continuum soft mode analysis.(10) Accordingly, the solvent
can no longer be treated as a hydrodynamic drag medium: Its capacity
to form local conformation-dependent dielectric domains must be incor-
porated.

To illustrate how our theory works, suppose a putative contact involves
W-C complementary regions of the chain which flank the consensus
window and requires the closure of intra-chain loops which define different
dielectric environments determined by the confined cluster-like versus bulk
solvent. The formation of such environments imposes constraints on the
dihedral torsional states of the units forming the loop which must be
fulfilled if the contact is to be formed and as such, registered in the BPM:
Not only the backbone two-state "vertebrae" (see Fig. 2) must be correctly
positioned for the loop to form, but the charged phosphate groups of the
RNA backbone should face the best dielectric environment available for
better solvation.(4) Now let us cast this situation within our the computa-
tional context: If all spin flippers or two-state oscillators are in the
"correct" state specified above at the time of the reading, a contact is recorded

Fig. 2. Schematic representation of vertebral or row (1) consensus: When the vertebrae are
correctly positioned, as in a), loop closure becomes readily feasible, while it is precluded
except for large loops (N(loop)» 17) if vertebral consensus is not reached, as in situation b).
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in the BPM. In this way the coarse soft-mode dynamics of the chain
evolves as a sequence of pattern recognitions.

These dynamical aspects are incorporated in our computations since
they determine the way in which the LTM is translated into the BPM by
means of a pattern recognition. In turn, this parallel operation must be
re-prescribed—technically renormalized—after each BPP transition, since
consensus evaluation depends on the last BPP generated: Once foldings
have formed, the distance between any two specific units is no longer the
contour distance along the chain, and the loops which must be closed to
form a contact are of different length relative to a those formed upon the
random coil. These facts imply that the dielectric constraints are different
and thus, the patterns in the LTM are recognized differently with each
folding step. This sketch reveals that long-range correlations are introduced
in the LTM by means of the renormalization operation.

To summarize, the approach put forth in this section may be best
described as a coarse-grained analysis of soft-mode (torsional angular
motion) dynamics defined by the recognition of evolving patterns of local
dihedral torsional constraints consistent with a simplified topological
model for the RNA backbone. Long-range intramolecular interactions are
then induced by the fulfillment of local constraints to which the chain
dynamics is subject due to the capacity of the solvent to determine domains
of different dielectric. The essential premise in this analysis is that the local
dihedral torsions within an intrachain loop must be constrained to remain
in one potential basin ("Cis or trans") if the concurrent contact is to be formed,
so that physically, charged phosphates within the loop face the highest
dielectric environment. Thus, the fact that the solvent defines conformation-
dependent dielectric environments is computationally assimilated to the
fact that a specified pattern of fulfilled topological constraints at the time
of a reading of the LTM gets translated into a BPP.

This sketch of the operational tenets reveals that, although advantage is
taken of the fact that there exists a wide separation between characteristic
timescales associated to folding events (typically in the range 1 u/s-103s)
and internal backbone motions, essentially realized as dihedral torsions
(typically in the range 10-11-10-5 s),(9-11) no "adiabatic assumption" sub-
ordinating or enslaving microscopic degrees of freedom to BPP transitions
is introduced.

The basic representational and operational tenets of the computational
design for the semiempirical microscopic model sketched above are:

(a) An LTM matrix simultaneously recording the state of each "ver-
tebral" and phosphate orientation dihedral. Each effective torsional state is
generated by a two-state oscillator whose period is chosen from Gaussian
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temperature-dependent distributions which are different depending on
whether the nucleotide is free or engaged in an intrachain contact and its
concurrent loops. A new period is chosen for an individual oscillator after
completion of the previous period, thus incorporating thermal fluctuations.
The broad latitude (up to 30° to 60°,(9)) in local torsional coordinates
within local correlation maps of the RNA chain, and the vast structural
distorsion it leads to, implies that the binary codification cannot be
implemented at the geometric level. Rather, the spin flippers or oscillators
are meant to mimick changes in the local topological constraints to which
the flexible like chain is subject in order to reach specific structural
patterns.

(b) A Watson-Crick map (WCM) of antiparallel windows upon
which the BPM's are built by translation of the information encoded in the
LTM.

(c) A built-in internal clock (C), incorporated in order to synchronize
the LTM generation timing and its reading and subsequent evaluation at
regular intervals. In accord with Shannon's information theory, the fixed
beat period of C must be at most half of the shortest dihedral period.

(d) The folder (F) which evaluates the LTM and identifies consensus
windows. This operation is matched with the WCM to generate BPM's
and ponders the interrelationship between "vertebral" and phosphate-
orientation consensus. In addition, F may dismantle or relax contact
regions in the BPM whenever a significant consensus bubble arises within
a previously-formed consensus window.

(e) The operation of F is feedbacked within a renormalization loop
into the LTM generator, and the new evaluation of consensus windows is
renormalized or prescribed according to the last BPM generated.

Taking into account that folding materializes in a statistical ensemble
of RNA molecules and that conflicting consensus evaluations demand a
probabilistic approach, we shall adopt an appropriate output representa-
tion: The statistical dynamics of consensus search is defined by the time
evolution of a base-pairing probability matrix (BPPM), representing the
weighted overlap of different consensus evaluations.

The essential operation in our parallel algorithm, the folding opera-
tion, lies within a renormalization feedback loop and consists in the trans-
lation of information casted in terms of the state of internal microscopic
degrees of freedom into a coarser representation, a BPP defined by a BPM.
The latter matrix is in turn built upon the WCM. Thus, the algorithm and
its underlying semiempirical model identify the BPP class to which an
LTM belongs at certain time intervals according to a prescribed set of
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rules. The generation of the LTM is in turn affected by the last BPP tran-
sition that has taken place, since a new set of constraints arises with each
new BPP formed, and the prescription for the evaluation operation itself is
renormalized and thus depends on the last BPP which has occurred. Prior
to defining the folding process explicitly within our model, we must specify
the basic representational elements and their interrelationships with regards
to the basic operations:

4a. The LTM

This 3 x N matrix is a coarse representation of a microscopic realiza-
tion of a BPP. Each entry adopts the values 1 or 0, representing two
significant states of an RNA backbone torsion localized in a specific
nucleotide (nt) or unit. The entry values are generated by two-state
oscillators, one for each entry, whose period T is automatically adjusted
after one whole period has been completed from a fixed T-dependent
distribution w(T) according to renormalization specifications detailed
below. Each column in the LTM represents a different nt, with the i th
column (1 < i < N ) corresponding to the nt with contour value i along the
chain. Each of the three rows represents a different reading space and their
interrelationships are pondered each time the LTM is translated into the
BPM, according to the size of the consensus window.

Each entry in the first row, denoted (1) , indicates the dihedral spin
state for a backbone "vertebral" torsion, as schematized in Fig. 2. A con-
sensus window of consecutive spins in, say, state 1 in row (1) is a necessary
condition for closure of a loop comprised of the sequence of nt's within the
associated contour window. The physical interpretation of this vertebral
consensus as a necessary constraint for loop closure is schematized in
Fig. 2. Notice that vertebral consensus is not directly related to any
geometric curvature condition for loop closure, which would make it
impossible to have consensus subwindows flanked by W-C complementary
regions (it would be impossible to satisfy at the same time and in the same
region of the chain geometric constraints for loop formation involving the
whole region and those for any smaller loop involving a subregion). On the
other hand, the possibility of different conflictive consensus evaluations is
perfectly compatible with the probabilistic nature of our model. Depending
on the size of the window, the existence of vertebral consensus at the time
of a reading with flanking regions within the WCM may lead to the BPM-
recording of an intra-chain long-range contact formation between the nt's
flanking the consensus window. If N(loop) indicates the size of the consen-
sus window, we may state that the necessary condition becomes sufficient
if and only if N(loop) > Nc= 17 (cf. ref. [12]), as shown below.
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The entries in the second and third rows, denoted (2) and (3), of the
LTM indicate the dihedral spin states of those backbone torsions engaged
in orienting the negatively-charged phosphate group. Thus, for the sake of
convention, spin state 1 in rows (2) and (3) for column i indicates that the
phosphate of the i th nt faces bulk solvent whenever this nt is part of an
intramolecular loop.

4b. The Interrelationship Among the Rows of the LTM

To specify the interrelationships between these different reading spaces
in consensus evaluation, we first define an intramolecular (i, j) contact with
i<j as the W-C base-pairing engaging the two nt's with contour values
i and j The occurrence of the (i, j) contact is marked by a 1 in the
ij-entry of the triangular BPM. Suppose the initial BPP corresponds to the
random coil, that is, there are no intramolecular contacts, and N(loop) =
|j — ( i + 1 ) | > 17 (cf. ref. [12]). Then, once a reading of the LTM takes
place, an (i, j) contact will be produced after evaluation and recorded as
such in the new BPM if all dihedral "vertebral" spin states for the segment
of row (1) flanked by entries i and j are in the correct torsional conformation
for folding, that is, they are in state 1 (cf. Fig. 2). The fact that the range
of the putative (i, j) interaction must be larger than 17 to materialize with
vertebral consensus only can be justified as follows: Loop closure defines
two solvent domains, an innerlow-dielectric domain confined by the loop of
rod-like dimensions and an outer high-dielectric or bulk-like domain. If the
loop is sufficiently large, encompassing more than 17 nt's, as demonstrated
in ref. [12], the dielectric difference between the inner and outer domain
becomes negligible: Each charged phosphate group pointing to the inside
of the loop admits four water-solvation layers for a loop of size 17 or
larger. However, for smaller loops the consensus demands are higher and
vertebral consensus is no longer sufficient: The phosphate groups must be
oriented towards the bulk for better solvation. This argument leads us to
qualitatively distinguish rows (2) and (3) from row (1): As more orienta-
tional constraints are associated to loop closure, more consensus is needed
for it to materialize, so that for a putative loop smaller or equal to 17, that
is /j — (i+ 1)| < 17, consensus windows in rows (1), (2) and (3), flanked by
columns i and j becomes the necessary and sufficient condition.

4c. The Dihedral Frequency Distributor (DFD)

In attempting to project dihedral torsions into the BPP space, where
the folding process is conventionally recorded, the timescale limitations of
molecular dynamics simulations must be circumvented. This explains the
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need to introduce models, such as the one presented in this work, in which
activated molecular motions in the ns to us range are considered.(9-11)

Thus, faster diffusional-like unhindered torsions, such as the torsion
around the glycosidic sugar-base bond in an unpaired nt are integrated out
as conformational entropy of the state defined by the LTM representation.
Such motions, well into the ps range, determine the rod-like shape of the
RNA molecule when viewed within the timescale window between two
LTM states. Precisely this interrelation between shape and timescale
justifies the concept of inner and outer solvent domain defined by an
intramolecular loop, as put forth in our consensus analysis of the entropic
cost of loop closure. Thus, the microscopic mean time range relevant to
LTM transitions is 1 ns-1 us, covering the timescale for internal motions
(1 ns-10 ns), of the order of the calculated diffusional displacements of
flexible hinged domains,(10) and, at the other end of the spectrum, the
limiting value (1/10 to 1 //s) for a localized helix-unwinding event leading
to a bubble within a helix.(11)

These considerations lead us to define a temperature-dependent
normalized distribution of periods, W = W(T). In particular, the periods of
unhindered dihedral oscillators are assigned from this distribution in such
a way that the effect of thermal fluctuations on the formation of consensus
and thus, on structural transitions is incorporated. The distribution has
three Gaussian peaks, each with dispersion r2 = gT, where the constant g
depends on the actual denaturation temperature T(denat.) and on the con-
sensus interpretation of denaturation, as shown below. The peaks occur,
respectively, at mean periods 10 ps, 10 ns and 1 us. This distribution allows
us to classify nt's in two classes: To class I belong all nt's with mean
dihedral period 10 ps, while class II contains all nt's whose mean dihedral
period is either 10 ns or 1 us. The first class corresponds to internal
dihedral torsions of the RNA chain of the type probed by fluorescence
depolarization.(10) These torsions occur in free nt's, that is, unpaired nt's
not belonging to a loop. Accordingly, the DFD in the folding machine
establishes a lottery from which periods of dihedral spin oscillators for free
nt's are assigned from within the period range centered at 1 ns. A new
period is assigned from the lottery to each oscillator each time a whole pre-
viously-assigned period has been completed. The frequency f= 1/T of a
dihedral spin in any row of the DSSM corresponding to a nt not engaged
in an intra-chain interaction or loop satisfies the inequality

with T' satisfying:
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The condition yielding the extreme period T' arises from the fact that
there are at most 3N free oscillators in the chain. At the typical folding
temperature T= 303 °K, we get T »2 ps.

The other two peaks in the distribution correspond, respectively, to
mean periods for nt's engaged in an A-U or G-C Watson-Crick base-pair
within a helix, or to nt's within loops. In the latter case the period range
covers the entire bimodal distribution. Again, the same considerations
apply in regards to the period assignment to oscillators for class II nt's.
These rules imply that the nt's in loops concurrently formed with an
intrachain helix adopt the same cadence as the helix nt's themselves. This
is so, since the rate of helix dismantling is exclusively dependent on the size
of the helix taken by itself,(4,13) and determined by the formation of a
significant consensus bubble amongst the class II nt's engaged in the helix.
Furthermore, this local limiting event is fairly independent of concurrent
microscopic events in the associated loops.

The mechanistic aspects of period distribution, as performed by the
DFD imply that this operation is subject to renormalization with each
BPP transition: A BPP determines which columns in the LTM correspond
to free or class I nt's in the chain and which correspond to nt's engaged in
an intrachain interaction, or, equivalently, they belong to class II. Thus,
since a BPP transition reclassifies the nt's, it also dictates the range from
which new period assignments are drawn. The period range for a specific
nt remains the same as before the BPP transition if the transition does not
alter the class of the nt, and changes if the BPP transition transfers the nt
to a different class.

4d. The Built-in Internal Clock (C)

In order to satisfy the basic tenets of Shannon's information transmis-
sion while making all operations C-synchronized, the intrinsic beat period
of C should be taken to represent 1/2T', one half of the shortest possible
period to be assigned to a dihedral spin oscillator. Since T' depends on
W(T), it is itself T-dependent. The time interval between two consecutive
readings of the LTM, r(read), is taken as constant and, in order to lower
the operational cost, it is fixed at the shortest time that a BPP transition
could possibly take. Thus, r(read) = 23x3T = 1 ns, the shortest time to form
the 3-loop, the smallest possible loop engaging the fastest oscillators.

4e. The Folder (F)

The actual translation of the consensus evaluation of the LTM into
the BPM is performed by the folder (F), with the aid of an updated version
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of the reading instructions manual (RIM). An updating takes place with
each BPP transition marked by a change in the BPM. The folder might
form or dismantle (relax) several intrachain helices in parallel and records
in the BPM the consensus evaluation performed with the aid of the RIM,
as indicated in the schemes displayed in Fig. 3. The consensus search or
evaluation under unconstrained conditions, that is, with a RIM defined by
the random coil BPP, has been partially delineated in a) for helix forma-
tion. The flow chart for this parallel operation is displayed in Fig. 4.

On the other hand, helix dismantling materializes and is recorded as
such by deletion in the BPM whenever a consensus bubble forms amongst
class II nt's engaged in basepairing. By "consensus bubble" we mean that
in any of the three rows, a consecutive sequence within the set of dihedral

Fig. 3. A) General scheme of the folding machine featuring its basic components: The
inherent clock (C), the dihedral frequency distributor (DFD), the folder (F), the output
displayer (O) and the renormalizer (R). B) General scheme of the interrelation between the
different representational elements: The Local topological constraints matrix (LTM), the
reading instructions manual ( R I M ) and the base pairing matrix (BPM).
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Fig. 4. The flow chart of the folding operation as a consensus evaluation after reading the
three rows ( 1 ) , (2) and (3) of the LTM. The following notation has been adopted: "consens.
(1)?" and "consens. (2)&(3)?" refer respectively to finding a consensus region on row (1) or
finding it on rows (2) and (3) on the LTM; "W-C?" refers to finding Watson-Crick com-
plementarity in the regions flanking the consensus region and " N ^ N c ? " refers to deciding
whether the size N of the consensus region is larger than the critical size Nc.

spins of helix nt's of length 30% of the total helix length must be out of
phase with the consensus value 1. In other words, the sequence within the
helical region must adopt the state 0 at the time when the reading of the
LTM takes place. Because of the renormalization loop, this transition at
the BPM level immediately transfers a new set of constraints for the
generation of new LTM's: The nt's previously engaged in the helix and in
the concurrent loops are reclassified, being transferred from class II to the
higher frequency class I.

Stacking effects(14) reflect themselves mechanistically in the formation
of the consensus bubble: The larger the helix, the more improbable to find
a 30% out-of-phase subsequence of oscillators from class II. Furthermore,
these considerations enable us to estimate the constant g which determines
the effect of thermal fluctuations on the period distribution: At the
denaturation temperature T(denat.), every helix formed must develop a
consensus bubble evaluated and recorded with the next reading of the
LTM. Thus, if a is "large enough," the period distribution in the helix is
broad enough so that consensus cannot be preserved: The period range, of
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the order of a, is such that a helix consensus cannot survive two con-
secutive readings. From these considerations, and taking into account our
empirical estimate of the denaturation dispersion fixed at a = 0.6 ,us, and
the typical experimental T(denat.) = 312 °K for ribozymes such as the ones
studied in this work,(14) we get g% 1.2 x 10 - 1 5s 2 /°K.

4f. The Renormalizer (R)

The renormalizer has two simultaneous roles: It updates the RIM by
determining contour distances relative to the latest BPP generated, and, by
readjusting frequencies, it places a new set of constraints on the generation
of new LTM's based on the latest BPP translated. Thus, renormalization
accounts for long-range correlations that develop on the LTM as a conse-
quence of folding events recorded as BPP transitions.

4g. Actual Computational Implementation

The computation performed by (n — p) loop iteration constitutes a
parallel algorithm designed to predict the active structure of biomolecules
reached within times incommensurably shorter than those required for
thermodynamic equilibration. Such computations require a parallel evalua-
tion of folding possibilities at regular intervals which, in turn, define the
set of constraints to which the system is subject when undertaking the
next folding stage. A sequential machine with adequate memory capacity
(~ 10 GB) is suitable to perform such computations.

The dynamics can be generated sequentially provided the LTM is
quenched throughout each (n — p) iteration. Within a single (n — p) loop,
the sequential computational bottleneck is the n operation since it is
inherently a parallel operation consisting of a pattern recognition in the
LTM. If N is not too long (N=100-300) this operation may be accessible
to a sequential machine engaged in column by column reading with
concurrent memory storage. A state-of-the-art microVAX cluster takes
approximately 1.08ms of real time to sequentially read each LTM for
N =220. On the other hand, the renormalization operation which
redistributes frequencies according to the pattern generated by n using a
Monte Carlo lottery routine, is inherently sequential and takes about
0.3 ms. The overall computation time involved in 107(p — p) iterations is of
the order of 104 s for the system size and machine specifications mentioned.

In practice, each dihedral oscillator or flipper may be modelled as a
two-state spin coupled to an external rapidly oscillating magnetic field of
invariant frequency conveniently fixed at 1012Hz. Each coupling constant
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defines the flipping response to the oscillations of the external field. Thus,
different coupling constants entail different degrees of entrainment by the
external field. Then, a distribution of coupling constants begets a distribu-
tion of flipping frequencies. Good advantage may be taken of spin glass
simulation technology to actually generate the LTM's in this way. This is
the actual computational ansatz which has been used in this work to
generate LTM's after a sequential renormalization taking place during the
quenching concurrent with each (n — p) iteration.

5. A LAGRANGIAN DEFINED AT THE
SEMIEMPIRICAL MICROSCOPIC LEVEL

Foldings of the RNA chain have been identified as patterns of locally-
encoded signals whose generation, translation and renormalization have
been studied in the previous section. Since structural patterns have been
identified with consensus windows within which local topological con-
straints are fulfilled, it follows that the preferred folding pathway resolved
as a sequence of BPP-transitions is the one for which each transition
entails the minimal cost in conformational entropy, while maximizing the
enthalpy decrease. This BPP-pathway is the easiest to form, and therefore
the most probable as it entails the maximum economy of means for each
step. This is so since consensus as identified in a LTM, implies the fulfill-
ment of local topological constraints which, in turn, determine the BPP
and, on the other hand, the enthalpic content is exclusively dependent on
the contacts which have materialized. Thus, our semiempirical approach is
perfectly compatible with the SMEL principle.(4,13)

In view of these facts, the following problem arises: Is it possible to
define a Lagrangian L at the coarse microscopic level of LTM-transitions
which reproduces the SMEL behavior when an LTM-trajectory is trans-
lated as a sequence of BPP-transitions? According to our treatment, the
solution to this central problem involves determining L = K—H, where
H is the enthalpy content, or potential in our context, and K is the
"kinetic energy" of an LTM, K = K(LTM), which must satisfy the following
conditions:

(A) It must be uniquely defined for all LTM's associated to a specific
BPP, since otherwise many LTM-trajectories, amongst which is the one
singled out by L, would translate into the SMEL pathway.

(B) A BPP-transition is favored if it entails a minimal entropic cost,
therefore its corresponding LTM-transition must entail a minimization of
the kinetic energy loss.
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In accord with conditions (A) and (B), we define

where the fi's, given in Hz, are the mean frequencies of the oscillators of
the LTM and hence H must be given in Hz2 units.

The choice given in Eq. (9) is a good one, as we shall demonstrate
making use of the fact that the oscillator frequencies of the LTM are deter-
mined by the renormalization operation: Let us suppose that a pattern of
local signals has been identified and recorded in the BPM at a given
time by the translation operation. Then, the renormalization operation
reclassifies the residues engaged in the latest BPP generated, from class I
into class II. The reader is reminded that nts. belonging to loops whose
closure is concurrent with interactions adopt the same cadence of those nts.
that form the respective contacts. Thus, the loss in conformational entropy
associated to the CP transition is corresponded with a loss in kinetic
energy of the LTM in such a way that a minimization of the entropy loss
is corresponded with a minimization of the loss in kinetic energy. This
implies that the trajectory which maximizes the L-action is the one that,
projected onto BPP-space, represents the SMEL behavior.

On the other hand, the renormalization operation warrants the
uniqueness of K for every LTM which translates into the same BPP, since
the renormalization operation establishes the new frequencies exclusively
on the basis of the latest BPP formed. By virtue of the renormalization
operation, the occurrence of intrachain contacts is reflected as a lowering
of oscillator mean frequencies. This is the reason why the Lagrangian L
underlies the coarse microscopic behavior which shows up at the level of
BPP transitions as the SMEL principle.

In regards to the T-dependence of K, we must take into account
that at the denaturation temperature T= T(denat.), consensus bubbles are
created which dismantle every BPP, as indicated in Section 4. This is the
result of a broad spreading of frequencies beyond the critical spreading
value and the concurrent impossibility of preserving phase in consensus
windows, as indicated in Section 4. Thus, the renormalization operation
near criticality will speed up all the oscillators for consensus windows
where critical size bubbles occur, while such bubbles will become more and
more ubiquitous as T approaches T(denat.). Then, K increases with Tand
the following relation holds as T approaches T(denat.) from below:
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To conclude we may state that the most economic folding pathway
resolved at the coarse microscopic level, y*, satisfies the following classical
dynamics result:

Where "L-action(y)" denotes the sum of all L(LTM(i))'s for all the
LTM(i)'s, with i = discretized time index, along the trajectory y defined by
mapping the previously-alloted time interval over (Z2)3N.

Without loss of generality we may assume that there exists a positive
constant q so that q + L = L' > 0. We may define a stochastic process E
at the semiempirical microscopic level of DSSM transitions by defining
transitional probabilities with respect to L':

Fig. 5. Plot of the Hamming distance ( x 100) between consecutively-evaluated LTM's along
the folding pathway generated by iterating (x — p) loops for the Tt LSU RNA.
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where V, W, W are DSSM's, and the sum is extended over all W states
accessible from V within a pre-determined Hamming distance d = d(max.)
between LTM matrices (see Fig. 5). This distance is defined as:

Prior to carrying out the stochastic computation using the Lagrangian,
we determine the time-dependence of (d(max.) using the basic operational
tenets defined in Section 4. A D — t plot (d= 100d(max.)) has been
generated by performing 107 (n — p loops) of the type indicated in Fig. 2,
where n denotes translation and p renormalization. Thus, D is determined by
computing after every T(read) interval the distance between two consecutive
LTM's evaluated through two consecutive p-operations. A computation for
the functional RNA TtLSU (long splicing unit of Tetrahymena), is displayed
in Fig. 5. This intensively-studied RNA is a prototype ribozyme or catalytic
RNA of the so-called group I.(14,15)

6. RESULTS

The aim of this section is to establish the Lagrangian structure of our
coarse version of the soft-mode chain dynamics described in Sections 4-5.
In order to reach this goal, we first consider the fixed partition Z of confor-
mation space X into BPP's. As indicated in Section 2, we already know
that the dynamics over Z may be defined by Arrhenius-type elementary
activated processes between BPP's. This treatment involves the adiabatic
assumption that BPP's may be regarded as quasi-equilibrium states. Now,
we shall establish the Lagrangian structure of the LTM dynamics by com-
paring the time-dependent spreading of the adiabatic probability over Z
measured by Shannon information entropy with the time-dependent
spreading of the probability over Z determined by the Lagrangian.

The identified Lagrangian L enables us to account for the microscopic
origin of the phenomenon of saturation of Shannon's informational content
due to the folding process.(2) This thorough saturation of information
content has been inferred previously(2) using the adiabatic ansatz. The
microscopic treatment requires a comparison between the coarse informa-
tional entropy, a L ( t ) , determined by the Lagrangian-induced stochastic
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process 3 and that determined by the adiabatic process £,. The former is
identified as follows:

where n is the translation or projection of an LTM into its BPP class and
y is the probability measure determined by S over the space of LTM path-
ways. Thus, for a given BPP, indicated BPP(i), the quantity 7 t y p - 1 B P P ( i )
is computed as follows:

n , y n - 1 B P P ( i )

An understanding of Fig. 6 requires the previous interpretation of
Fig. 5. The analysis of Fig. 5 is carried out taking into account the time
evolution of patterns of locally-encoded structural signals determined by
the time dependence of the DSSM. Within the range 10-103 (p — p) loops
we observe a steady growth in the Hamming distance until the maximum

Fig. 6. Time dependence of the coarse information entropy aL relative to the partition Z for
Tt LSU RNA. The abscissas indicate time in $ ( p - p ) loops units. At T=303 °K, each LTM
(p — p(-evaluation takes place at T(read)« 10 - 9 s.
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value D = 30 is reached. This steady increase in pattern fluctuations is due
primarily to the large initial kinetic energy of the patterns, implying that
the phase of up to 30 % of the oscillators does not survive two consecutive
evaluations (p-translations) of the LTM. The maximum in D is due to the
initial formation of "misfolded" short-range structures which are easily
dismantled within the us timescale, as indicated below.

Incipient helices formed in structure-nucleation events in the range
10 - 8-10 - 5s are easily dismantled (a 30 % consensus bubble is formed
more easily than in fully-developed structures) with concurrent increase in
kinetic energy of the LTM pattern due to class II -> class I transitions in
all nts. formerly belonging to the helical stem as well as its concurrent
loops. This fragility of incipient structures causes the large pattern fluctua-
tions marked by a large D in the range 10 -8-10 -5s, or 10-104 (n — p)
loops. A large plateau starting at 10 - 4 s (105 (n — p) loops) marks the for-
mation of a relatively stable kinetic intermediate which contains all struc-
tural motifs which may form noncooperatively. That is, those motifs whose
associated N(loop) lies within the favorable ranges of low conformational
entropy cost: 3«N( loop) 14 or 18 < N(loop) < 100.(2,12) At 10 - 4s ,
cooperative events lead to other helices whose loops have favorable renor-
malized sizes, while their sizes relative to the random coil are unfavorable.
On the other hand, the increase in class II nts. beyond the formation of
the kinetic intermediate stabilizes the patterns determining the survival of
the oscillator phase in consecutive LTM evaluations. This determines the
relatively-low fluctuations beyond 10 - 4s.

At this point, we may examine Fig. 6. For short timescales 10 -8-10 -5 s,
fast-evolving internal degrees of freedom simulated as torsional oscillators
are not yet enslaved or entrained by BPP transitions which evolve within
typical timescales 10-4-103s. For this reason, within the range
10 - 8-10 - 5s, the level of exploration of conformation space due to
uncorrelated or short-range correlated torsional excitations must be vastly
larger than that resulting from an adiabatic process. However, an actual
adiabatic computation of a using working Eqs. (2)-(7) is clearly beyond
present day capabilities since the number M of a-priori possible BPP's is
of the order of eN.

As soon as the stabilized kinetic intermediate is formed,(16) the long-
range correlations coupling distant-row oscillators in the LTM, begin to
develop, as cooperative effects occur upon short-range nucleating interac-
tions. This long-range correlations are in turn induced by BPP transitions,
in consonance with the nature of the renormalization operation. Thus,
initial structure-nucleating steps involving uncorrelated or locally-
correlated motions do not demand as much enslavement of fast-evolving
torsions as cooperative events, which entail long-range correlations. For
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this reason, we expect the adiabatic approximation to fit the rigorous
results as soon as long-range correlations governed by BPP transitions
occur.

The information content as derived from the evolution of patterns at
the semiempirical microscopic level reaches its absolute maximum within
experimentally-relevant timescales,(2,6) as indicated in Fig. 6. This result is
to be expected, as it reflects the expediency and reproducibility of the
folding process which yield the active structure within biologically-relevant
timescales, thus concentrating the probability distribution in the time
alloted to complete renaturation.

In order to test the range of validity of the adiabatic approximation,
we compared the L-based computation of the informational entropy, as
determined by Eqs. (9)-(15), with the adiabatic computation which stems
from Eqs. (2)-(7). Due to the exhorbitant cost in computing time required
to iteratively multiply a matrix of order MxM, with M~eN, we have
confined ourselves to a limiting chain length N = 18. Both the adiabatic
and the L-based plots are contrasted in Figs. 7 and 8, revealing an almost
perfect coincidence with higher than 98 % agreement beyond 8 x 102

(n — p) interations %8x 10 - 7 s . As before, the L-based dynamics requires
the previous computation of the size of LTM fluctuations due to (n — p)
iterations. This is displayed in Fig. 9.

Fig. 7. Time dependence of the coarse information entropies a(t) and a L ( t ) relative to the
partition Z for a specific randomly generated sequence of length N=18. The abscissas indicate
time in $(n-p) loops units. Each LTM (n — p(-evaluation takes place at T(read)= 10-9 s.
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Fig. 8. Time dependence of the coarse information entropies a(t) and a L ( t ) relative to the
partition Z for an ensemble average over 100 randomly generated sequences of length N = 18.
The abscissas indicate time in K(n-p) loops units. Each LTM (n-p)-evaluation takes place
at T(read)« 10-9 s.

Fig. 9. Plot of the Hamming distance ( x 100) between consecutively-evaluated LTM's along
the folding pathway generated by iterating (n-p) loops for a specific randomly-generated
sequence and for an ensemble average over random sequences of length N = 18.
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The same quantitative agreement is found both in the randomly
generated sequence of Fig. 7 as well as in the ensemble average over 100
random sequences (Fig. 8). The discrepancy between a(t) and aL( t ) raises
to an upper bound of 8 % within the timescale range 10 - 7s-10 - 6s. This
is clearly due to the microscopic origin of fluctuations which becomes
apparent at shorter timescales and is therefore only effectively captured by
the L-based dynamics over (Z2)3N. An inspection of Figs. 7-8 reveals that
the dynamics become entrained over the longer timescales (1us-1 s) rele-
vant to folding. The initially large fluctuations observed in both computa-
tions of the Shannon entropy correspond to noncooperative misfolded
structures(16) formed in the 1/10 us to 1us range, most of which are later
dismantled to yield a fairly stable cluster of kinetically-related structures.(16)

The existence of such a dynamic intermediate state is confirmed by the
existence of a plateau sustained within the 1 us-1/10 ms timescale range.

As observed in Figs. 7 and 8, a does not tend to zero in the long-time
dynamics relevant to the folding timescale frame, as is the case with
naturally-selected sequences (Fig. 6). Rather, the coarse entropy decreases
asymptotically to a plateau value a = 2.4 valid for N = 18. This reflects the
fact that folding into a unique structure, reaching a sharply-peaked prob-
ability distribution within biologically-relevant timescales is not a generic
feature of the long-time chain dynamics. However, the coincidence between
the adiabatic and the projected Lagrangian behavior is indeed a generic
feature of RNA folding because it was obtained irrespective of natural
selection, revealing the inherently Lagrangian structure of the coarse
microscopic dynamics.
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